

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			0620/21
Paper 2			May/June 2010
			1 hour 15 minutes
Candidates ans	swer on the Question Paper.		
No Additional N	/laterials are required.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name in the spaces at the top of this page. Write in dark blue or black pen.

You may need to use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
Total	

This document consists of 16 printed pages.

1 Choose from the following list of gases to answer the questions.

ammonia carbon monoxide chlorine ethene methane nitrogen nitrogen dioxide oxygen propane

Each gas can be used once, more than once or not at all.

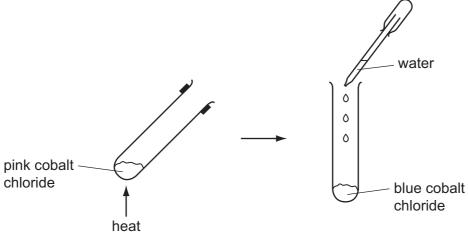
	•				
1/1/	'n	ın	n	α	as
v v		ıv		м	as

(a)	is a greenhouse gas produced by the decomposition of vegetation,	
		[1]
(b)	is an alkane,	
		[1]
(c)	reacts with sulfuric acid to form a salt,	
		[1]
(d)	makes up about 20% of the air,	
		[1]
(e)	is a halogen,	
		[1]
(f)	is a hydrocarbon which decolourizes aqueous bromine?	
		[1]
	[Total	: 6]

This question	is about hydrogen and some	compounds	containing h	ydrogen.
(a) Hydroger	n is a gas at room temperatur	e.		
Describe	the arrangement and motion	of the mole	cules in hydro	ogen gas.
arrangem	nent			
motion				[2]
(b) Draw the	electronic structure of a hydr	ogen molec	ule.	
				[1]
(c) The symb	ools for two isotopes of hydro	gen are sho	wn below.	
	!н	³ ₁ H		
(i) \//bo	•	·		
(i) Wha	t do you understand by the te			
	plete the table to show the nu drogen.	mber of sub	atomic partic	les in these two isotopes
	isotope	1 ₁ H	³ H	
	number of electrons			
	number of neutrons			
	number of protons			[41
(I) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				[4]
(a) vvnen nye	drogen burns, energy is giver	out.		
State the	name given to a reaction whi	ch gives out	t energy.	
				[1]

2

- (e) Hydrochloric acid reacts both with metals and with metal carbonates.
 - (i) A student observed the reaction of hydrochloric acid with four different metals. The student used the same concentration of hydrochloric acid and the same mass of metal in each experiment.


metal	observations
cobalt	dissolves very slowly and very few bubbles produced
iron	dissolves slowly and a few bubbles produced slowly
magnesium	dissolves very quickly and many bubbles produced very rapidly
zinc	dissolves quickly and many bubbles produced rapidly

Use the information in the table to suggest the order of reactivity of these metals.

most	reactive —	→ least reactive
		[2]
(ii)	State the names of the three products forme calcium carbonate.	ed when hydrochloric acid reacts with
		[3]
		[Total: 14]

3 Some pink cobalt chloride was heated gently in a test-tube. The cobalt chloride turned blue.

A few drops of water were then added to the blue cobalt chloride. The cobalt chloride turned pink.

			heat				
(a) (i)	State the nar	ne of this type	of reaction.			
(i	i)			ntence. Use words			[1]
(.	••,	alkaline	chloride	dehydrated		water	
		When			. cobalt chlor	ride is heated,	, it loses
		its		of o	crystallisation a	and changes co	olour. [2]
(b)	Cob	alt is a metal.					
(i)	State two ph	ysical properti	ies which are cha	racteristic of m	etals.	
							[2]
(i	i)	•		eriodic Table pred allic properties.	ict two physica	al properties of	cobalt in
							[2]
. ,		` '	s a basic oxide nical property (e. of cobalt(II) oxide			
							[1]
							[Total: 8]

For Examiner's Use

The table shows the mass of various compounds obtained when 500 cm³ of seawater is evaporated.

compound	ions present	mass of compound/g
sodium chloride	Na⁺ and C <i>l</i> ⁻	14.0
magnesium chloride	Mg²⁺ and C <i>l</i> ⁻	3.0
magnesium sulfate	Mg ²⁺ and SO ₄ ²⁻	2.0
calcium sulfate	Ca ²⁺ and SO ₄ ²⁻	0.5
potassium chloride	K⁺ and C <i>l</i> ⁻	
potassium bromide		0.5
calcium carbonate	Ca ²⁺ and CO ₃ ²⁻	0.5
sodium iodide	Na⁺ and I⁻	
		total mass = 20.0

(a)	Which negative ion is present in seawater in the highest concentration?	
		[1]
(b)	Write the symbols for the two ions present in potassium bromide.	
	and	[1]
(c)	Calculate the mass of sodium chloride present in 5 g of the solid left by evaporating to seawater.	the
		[1]
(d)	Describe a test for iodide ions.	
	test	
	result	[2]

(e)	Aqı	ueous chlorine reacts with aqueous sodium iodide.	
	(i)	Complete the equation for this reaction.	
		Cl_2 + 2NaI \rightarrow + 2NaC l	
			[1]
	(ii)	What colour is the solution when the reaction is complete?	
			[1]
(iii)	An aqueous solution of iodine does not react with aqueous potassium bromide. Explain why there is no reaction.	
			[1]
(f)	Cal	culate the relative formula mass of magnesium chloride, $\mathrm{MgC}l_2$.	

Am	onium sulfate is used in fertilisers.	
(a)	State the names of the three elements found in most fertilisers.	
)	
	3[3	;]
(b)	Suggest why farmers use fertilisers.	
	[2	<u>']</u>
(c)	Ammonium sulfate is a salt which is soluble in water.	
) What do you understand by the term soluble?	
	[1]
	Which of the following methods is used to make this salt in the laboratory? Tick one box.	
	adding an acid to a metal	
	adding an acid to a metal oxide	
	by a precipitation reaction	
	by the titration of an acid with an alkali [1]
(d)	A mixture of ammonium sulfate and sodium hydroxide was warmed in a test-tube. A gas was given off which turned red litmus paper blue.	
	State the name of this gas.	
	[1]

© UCLES 2010 0620/21/M/J/10

5

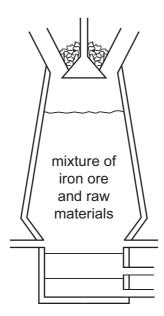
(e)	Fer	tilisers containing ammonium salts are often slightly acidic.	
	(i)	State the name of a compound which farmers add to the soil to make it less acid	ic.
			[1]
	(ii)	Explain why it is important for farmers to control the acidity of the soil.	
			[2]
(f)	The	e formula of ammonium sulfate is (NH ₄) ₂ SO ₄ .	
	In th	his formula state:	
	(i)	the number of different types of atoms present,	[1]
	(ii)	the total number of atoms present.	[1]
		[Total: 1	13]

For
Examiner's
1100

- **6** Many metals are extracted from their ores by reduction with carbon.
 - (a) Name the main ore of iron.

Г	[4]	1
	LI	1

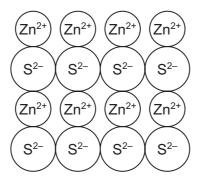
- (b) Iron is extracted from its ore in a blast furnace.
 - (i) Other than iron ore, state the names of two other raw materials used in the extraction of iron.


1.

(ii) One of the reactions taking place in the blast furnace is

FeO + C
$$\rightarrow$$
 Fe + CO

Write a word equation for this reaction.


- (iii) The diagram shows a blast furnace.
 Label the diagram to show each of the following:
 - the slag,
 - where the molten iron collects,
 - where air is blown into the furnace,
 - where the iron ore is put into the furnace.

[4]

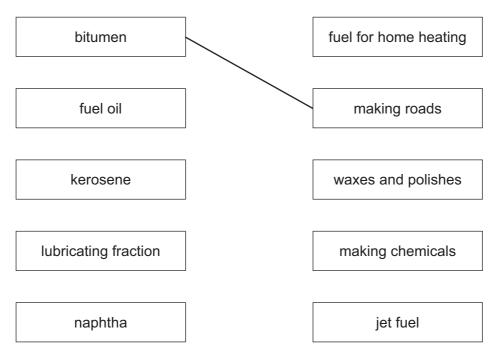
1	(c)	Zinc is extracted	d trom an d	are containing	zinc gultida
١	(·	ZITIC IS CALIBOTO	a iroin an c	or containing	ZIIIC Sulliuc.

Part of a zinc sulfide structure is shown below.

Suggest the simplest formula for zinc sulfide.

______[1]

[Total: 10]


7 Petroleum is a mixture of hydrocarbons.
Two of the processes carried out in an oil refinery are fractional distillation of petroleum and cracking of hydrocarbon fractions.

(a) Which property of hydrocarbons is used to separate petroleum into fractions? Tick **one** box.

boiling point	
chemical reactivity	
electrical conductivity	
melting point	

[1]

(b) Match the fractions on the left with their uses on the right. The first one has been done for you.

[4]

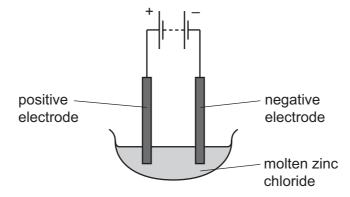
		13	•		
	racking is used to kenes.	break down long cha	ained alkanes into	shorter chained alkane	s and
(i)	State two cond	itions needed for cra	cking.		
	1				
	2				[2]
(ii)	hydrocarbon.	oon, $C_{14}H_{30}$, can be equation for this react		ke ethene and one	other
		$C_{14}H_{30} \rightarrow C_2H_{30}$	4 +		[1]
(iii)	Draw the full st	ructure of ethene sho	owing all atoms and	bonds.	
					[1]
(d) S	tate the name of t	he polymer formed fr	om ethene.		
					[1]
(e) E	thene is used to m	nake ethanol.			
(i)		ce is needed for this nd the correct answe			
	ammonia	hydrogen	oxygen	steam	541
(ii)		d is a catalyst in this nderstand by the tern			[1]
					[1]

[Total: 12]

For Examiner's

For Examiner's Use

- 8 Some substances conduct electricity, others do not.
 - (a) Which three of the following conduct electricity? Tick **three** boxes.


aqueous sodium chloride	
ceramics	
copper	
graphite	
sodium chloride crystals	
sulfur	

[3]

(b) State the name given to a substance, such as plastic, which does not conduct electricity.

.....[1]

(c) Molten zinc chloride was electrolysed using the apparatus shown below.

(i) Choose a word from the list below which describes the positive electrode. Put a ring around the correct answer.

anion anode cathode cation

[1]

(ii)	State the name of the product formed during this electrolysis at
	the negative electrode,
	the positive electrode. [2]
(iii)	Suggest the name of a non-metal which can be used for the electrodes in this electrolysis.
	[1]
	[Total: 8]

For Examiner's Use

DATA SHEET
The Periodic Table of the Elements

								Gro	Group								
_	=											≡	≥	>	>	\	0
							1 Hydrogen										Helium
7 Li Lithium	Be Beryllium 4											11 Boron 5	12 C Carbon 6	14 N itrogen 7	16 Oxygen 8	19 F luorine	20 Ne Neon
23 Na Sodium 11	Mg Magnesium 12											27 A1 Aluminium 13	28 Si Silicon	31 Phosphorus	32 S Sulfur 16	35.5 C1 Chlorine	40 Ar Argon
39 K Potassium	40 Ca m Calcium 20	Scandium	48 Ti Titanium	51 V Vanadium 23		Manganese	56 Fe Iron	Cobalt Cobalt	59 Nickel	64 Cu Copper	65 Zn Zinc 30	70 Ga Gallium 31	73 Ge Germanium 32	AS Asenic	Selenium	80 Br Bromine 35	84 Kr ypton 36
Rb Rubidium 37	Strontium 38		91 Zr Zirconium 40	93 Nb Niobium 41	96 Moybdenum 42	Tc Technetium	Ru Ruthenium 44	103 Rh Rhodium 45	106 Pd Palladium 46	108 Ag Silver 47	112 Cd Cadmium 48	115 In Indium 49	119 Sn Inn 50	122 Sb Antimony 51	128 Te Tellurium 52	127 I lodine 53	131 Xe Xenon 54
133 Cs Caesium 55	137 Ba n Barium 56	139 La Lanthanum *	178 Hf Hafnium 72	181 Ta Tantalum 73	184 W Tungsten 74		190 Os Osmium 76		195 Pt Platinum 78	197 Au Gold	1	204 T 1 Thallium	207 Pb Lead	209 Bi Bismuth 83	Po Polonium 84	At	Radon 86
Francium 87	226 Ra m Radium 88	Actinium Actinium Actinium Actinium															
*58-71	*58-71 Lanthanoid series	oid series series		140 Ce Cerium	Pr Praseodymium 59	Neodymium	Pm Promethium 61	Sm Samarium 62	152 Eu Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	162 Dy Dysprosium 66	165 Ho Holmium 67	167 Er Erbium 68	169 Tm Thulium 69	173 Yb Ytterbium 70	175 Lu Lutetium 71
Key	т х	 a = relative atomic mass X = atomic symbol b = proton (atomic) number 	1	232 Th Thorium 90	Pa Protactinium 91	238 U Uranium 92	Neptunium 93	Pu Plutonium 94			BK Berkelium 97			Fm Fermium 100			Lr Lawrendu 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the

reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

https://xtremepape.rs/